ANGLES IN POLYGONS

Pearson Edexcel - Thursday 4 June 2020 - Paper 2 (Calculator) Foundation Tier
1.

28	24	M1	for a complete method eg $360 \div 15(=24)$	If extra steps are shown do not award this mark.

Pearson Edexcel - Monday 8 June 2020 - Paper 3 (Calculator) Foundation Tier

2.

| 11 | 110 | M1 |
| :--- | :--- | :--- | :--- | :--- |
| M1 | for use of angles in a quadrilateral add to 360°,
 eg $360-130-95-65(=70)$
 for $180-" 70 "$ or for $(130+95+65)-180$
 cao | May be seen in diagram or as a sum to
 360°.
 $(130+95+65)-180$ gains M2 |

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Foundation Tier

3.

28	162 supported	M1	for method to find sum of the interior angles of a hexagon eg $(6-2) \times 180(=720)$ oe OR for method to find sum of the interior angles of a pentagon, $\operatorname{eg}(5-2) \times 180(=540)$ OR for method to find angle $A F C$ or $B C F$, eg $(360-2 \times 117) \div 2(=63)$ OR for dropping a perpendicular from A or B to $E D$ with 90° marked on $E D$ and 27° at the top	Must be a complete process that would lead to a figure of 720 if evaluated correctly. For a pentagon there must be an indication that they have divided the hexagon into two halves. 63 may be shown on the diagram for angle $A F C$ or angle $B C F$
		M1	for method to use ratio $2: 1$ eg marks as $2 x$ and x or as x and $\frac{1}{2} x$ on diagram OR for $($ [angle sum of hexagon $]-2 \times 117) \div 6(=81)$ oe or $($ [angle sum of hexagon $] \div 2-117) \div 3(=81)$ oe or $117+117+2 x+2 x+x+x=$ [angle sum of hexagon] oe OR eg ([angle sum of pentagon] $-117-180) \div 3(=81)$ oe or $117+180+2 x+x=$ [angle sum of pentagon] oe	Ratio must be used correctly if awarded for diagram Award provided [angle sum of hexagon] is greater than 700 or [angle sum of pentagon] is greater than 500 Algebraic route needs to show both sides of the equation. LHS of equation may be simplified.
		M1	for finding angle $F E D=81$ or for finding angle $C D E=81$ OR for complete process to find angle $A F E$ eg $($ [angle sum of hexagon] $-2 \times 117) \div 6 \times 2$ oe OR ([angle sum of pentagon] $-117-180) \div 3 \times 2$ oe	This may be shown by solving a correct equation to find the value of x.
		C1	for accurate working leading to angle $A F E=162$	Award marks for 162 on the diagram with working and not contradicted by the answer line. Award 0 marks for 162 without working.

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Foundation Tier

4.

14	shown	M1	for method to find angle $A D C$, eg 180-75 (= 105)	Must be clear link to angle $A D C$, may be marked on diagram
		M1	for angle $B C D=50$	
		M1	for method to find angle $A B C$, eg $360-100-50-$ " 105 "	Must be clear method/explanation shown. Angle marked on diagram is not sufficient.
		C1	(dep M3) for angles $A D C, B C D$ and $A B C$ correct and at least 2 appropriate reasons, eg vertically opposite angles are equal or vertically opposite angles are equal, angles on a straight line add to 180°, angles in a quadrilateral/kite add up to 360°, angles at a point add up to 360°	Underlined words need to be shown; reasons need to be linked to their method

5.

28	24	P1	starts process, eg $x+11 x=180$ or $180 \div 12(=15)$ or interior angle + exterior angle $=180$ oe complete process to find number of sides, eg $360 \div(180 \div 12)$ cao	

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Foundation Tier

6.

\begin{tabular}{|c|c|c|c|c|}
\hline 26 \& 140 \& P1

Al

P1

P1

P1 \& \begin{tabular}{l}
for complete process to find sum of the interior angles of a pentagon eg $(5-2) \times 180$

or exterior $360 \div 5=72$, interior $180-72=108,108 \times 5$

OR

for complete process to find sum of the exterior angles of the pentagon eg $(180-x)+(180-2 x)+(180-125)+(180-115)+(180-90)$

for sum of interior angles is 540

OR

for sum of exterior angles is 360

for start to process to find angle $A B C$

eg [angles in a pentagon] - $115-125-90(=210)$

or $115+125+90+x+2 x=$ [angles in a pentagon]

OR
$$
\begin{aligned}
& (180-x)+(180-2 x)+(180-125)+(180-115)+(180-90) \\
& =360
\end{aligned}
$$

for process to find angle $A B C$

eg " 210 " $\div 3(=70)$, " 210 " divided in the ratio $2: 1$

or for process to find angle $B C D$

eg $\frac{2}{3} \times$ " 210 "

or for $3 x=$ " 210 " or $-3 x=-$ " 210 "

cao

 \&

Must be a complete process that could lead to a figure of 540 if that process is evaluated incorrectly

360 must be identified as the sum of the exterior angles

Award provided [angles in a pentagon] is greater than 400

Algebraic route needs to show both sides of the equation.

LHS of equation may be simplified

Award if 70 is given for either $A B C$ or $B C D$ on the diagram

Award marks for 140 on the diagram with working and not contradicted by the answer line. Award 0 marks for 140 without working.
\end{tabular}

\hline
\end{tabular}

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Foundation Tier

7.

7		shown	M1 M1 C2 [C1 M1 M1 C2	```for \((\) angle \(B C A)=180-117(=63)\) for \((\) angle \(C A B)=180-" 63 "-54(=63)\) or \((\) angle \(C A B)=117-54(=63)\) for statement, eg. isosceles since angle \(B C A=\) angle \(C A B=63\) with fully correct reasons, from: angles on a straight line add up to \(180^{\circ}\) angles in a triangle add up to \(180^{\circ}\) exterior angle of a triangle is equal to sum of interior opposite angles for angle \(B C A=63\) and angle \(C A B=63\) and one of the above reasons] OR for \(\frac{(180-54)}{2}(=63)\) for identification of two angles in triangle \(A B C\) being " 63 " for statement, eg. isosceles since angle \(B C A=\) angle \(C A B=63\) and angles on a straight line add up to \(180^{\circ}\) and fully correct reasons: base angles of an isosceles triangle are equal and angles in a triangle add up to \(180^{\circ}\)```

| | | $\left[\begin{array}{l}\text { C1 } \\ \text { for angle } B C A=63 \text { and angle } C A B=63 \text { and one reason } \\ \text { from: base angles of an isosceles triangle are equal } \\ \left.\text { angles in a triangle add up to } 180^{\circ}\right]\end{array}\right.$ |
| :--- | :--- | :--- | :--- | :--- |

Pearson Edexcel - Specimen 2 - Paper 2 (Calculator) Foundation Tier

8.

| 25 | | 105 | P1for process to find the exterior angle or interior
 angle of a hexagon or octagon
 for process to find the both exterior angles or
 both interior angles
 for 105 from correct working |
| :--- | :--- | :--- | :--- | :--- |

Pearson Edexcel - Specimen 2 - Paper 3 (Calculator) Foundation Tier

9.

OCR Thursday 05 November 2020- Morning (Non-Calculator) Foundation Tier

10.

$\mathbf{5}$	(a)	(i)	Equilateral	$\mathbf{1}$		
$\mathbf{5}$	(a)	(ii)	Rhombus	$\mathbf{1}$		Mark intention
$\mathbf{5}$	(b)	(i)	Draws both lines of symmetry correctly	$\mathbf{1}$		See AG
$\mathbf{5}$	(b)	(ii)	She is incorrect oe and gives rhombus or parallelogram as the other quadrilateral	$\mathbf{2}$	M1 for correct description of RS of any other quadrilateral e.g square has order 4	For M1 ISW other comments that do not refer to symmetry
$\mathbf{5}$	(c)		Arrows facing the same way added to AB and DC	$\mathbf{1}$		Condone more than one arrow facing the same way on AB and DC

OCR November 09 November 2020- Morning (Calculator) Foundation Tier
11.

| | (a) | 30 final answer | $\mathbf{2}$ | B1 for 150 or 30 seen
 or
 M1 for $360 \div 12 \propto$ | e.g. $180-\frac{180 \times 10}{12}$ |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | 150 or FT(180 - (a)) | $\mathbf{1}$ | | Only allow FT if $0<$ their (a) <180 |

OCR Tuesday 5 November 2019 - Morning (Calculator) Foundation Tier
12.

19	(a)	30 final answer	$\mathbf{2}$	B1 for 150 or 30 seen or M1 for $360 \div 12 ~$		
	(b)	150 or FT(180 - (a) $)$	$\mathbf{1}$		e.g. $180-\frac{180 \times 10}{12}$	

OCR Tuesday 6 November 2018 - Morning (Calculator) Foundation Tier
13.

$\mathbf{2}$	(a)		Cylinder	$\mathbf{1}$		
	(b)		90° symbol marked at BCD cao	$\mathbf{1}$		Accept 90° with arc
$\mathbf{3}$			$364.8[0]$	$\mathbf{2}$	M1 for 320×1.14	

OCR Monday 12 November 2018 - Morning (Calculator) Foundation Tier

14.

| $\mathbf{1 0}$ | (a) | Two correct shapes each with correct
 name | $\mathbf{4}$ | B1 for each shape
 B1 dep on drawing seen for each
 correct name | Condone omission of diagonal
 Mark clear intention
 Kite or Rectangle must be joined
 along longest side
 Parallelogram must be joined along
 a shorter side
 Allow as additions to the given
 triangles |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | (b) | 30 30 120
 60 60 60 | $\mathbf{2}$ | B1 for one set | If answer line blank, may be seen
 on diagram |

15.

18	(a)		$360 \div 6=60$ $180-60[=120]$	B1 B1	Dep on first B1scored Alternative method: M2 for $\frac{180 \times(6-2)}{6}=120$ M1 for attempt to use $\frac{180(n-2)}{n}$	Accept 180×4 as numerator Working must be seen May have incorrect n or contain numerical errors
	(b)	12	$\mathbf{4}$	M3 for $360 \div 30$ or M2 for $180-(360-90-120)$ soi 30 or M1 for $360-90-120 ~ s o i ~$ 150	Allow 120 -90 or $120+90-180$ May be on diagram	

OCR Thursday 7 June 2018 - Morning (Non Calculator) Foundation Tier
16.

7			angle BDC $=44$ correct reasons leading to angle $B D C=44$	2	B1 for angle $\mathrm{ABD}=44$ or angle ADC $=100$ or M1 their $\mathrm{BDC}=$ their ABD two marks for [co-]interior angles [add up to 180] or allied angles [add up to 180] or angles between parallel lines [add up to 180] OR one mark for each relevant reason (maximum of two) from [angles in a] triangle [add up to] 180 alternate [angles are equal] corresponding [angles are equal] angles on a straight line [add up to] 180	Notation not required but values need to be identified eg the angle must be named or the value written in the correct place in the diagram or for BDC, on the answer line Ignore answer line if angle BDC is identified correctly in working If BDC is only correctly labelled on the diagram max B1 scored Reasons must be correct for their method leading to angle BDC $=44$. 180 may be implied in these reasons by a correct calculation

Pearson Edexcel - Sample Papers - Paper 1 (Non-Calculator) Foundation Tier
17.

23		152	M1	Start to method $A B D=38^{\circ}$ and $B A D$ or $D B C$ or $D C B=38^{\circ}$
M1	$A D B$ or $B D C=180-2 \times 38(=104)$			
A1	for 152 with working			

18.

28		$x=21, y=50$	P1	process to start solving problem eg. form an appropriate equation
			P1	complete process to isolate terms in x
		A1	for $x=21$	
P1	complete process to find second variable			
			$y=50$	

OCR Sample Question Paper 3 - Morning/Afternoon (Calculator) Foundation Tier
19.

7	(a)	125	$\begin{gathered} 1 \\ 1 \text { AO1.2 } \end{gathered}$		
	(b)	20	$\begin{gathered} 4 \\ 2 \text { AO2.1a } \\ 2 \text { AO2.4a } \end{gathered}$	B 1 for $\mathrm{PAB}=\mathrm{SAD}=45$ B1 for $B A D=90$ M1 for 360 - (their ' 125 ' + their ' 90 ' +125)	May be seen on diagram

20.

8(b)	Line through each vertex to the		mark intention	
midpoint of the opposite side				
Additional Guidance				

8(c)	There could be 0 or 1	B1		
	Additional Guidance			

AQA Tuesday 6 November 2018 - Morning (Non-Calculator) Foundation Tier

21.

15	$A D C=110$ or $B A D=180-110 \text { or } B A D=70$ or $B C D=180-110 \text { or } B C D=70$ or any indication that angle $E A D=$ angle $E D A$ or any indication that angle $B C D=$ angle $A D E$	M1	may be seen on diagram eg both written as x or both having the same value	
	$\begin{aligned} & E D A=180-110 \text { or } E D A=70 \\ & \text { or } E A D=180-110 \text { or } E A D=70 \end{aligned}$	M1dep	may be seen on diagram	
	40	A1		
	Additional Guidance			
	Angle values must be identified with the correctangle, either by notation or use of the diagram Notation such as $D=110$ or $C=70$ is not acceptable (although marks may still be awarded for correct position of angles on diagram)			
	Work on the diagram can score up to M2			
	Subject to the previous comment, award the higher mark for work seen on diagram and work seen in working space			
	Ignore incorrect angles when awarding up to M2, but any incorrect work cannot score M2A1			
	40 marked as angle $A E D$ on diagram but :180 on answer line or no sign of 40 as final answer in working			M2AO

AQA Tuesday 6 November 2018 - Morning (Non-Calculator) Foundation Tier

22.

28	Alternative method 1		
	$\begin{aligned} & (5-2) \times 180 \text { or } 3 \times 180 \text { or } 540 \\ & \text { or } \\ & 180-(360 \div 5) \text { or }(180-72) \end{aligned}$ $\text { or } 108$	M1	oe
	Ticks 'No' and 540 or Ticks 'No' and 108	A1	
	Alternative method 2		
	States that a pentagon cannot have five (or all) right angles or states that a pentagon can have five (or all) obtuse angles or states that the maximum number of right angles is three or draws a pentagon with exactly three right angles shown	M1	
	Ticks 'No' and states that a pentagon cannot have five (or all) right angles or states that the maximum number of right angles is three or states that a pentagon can have five (or all) obtuse angles and draws a correct diagram of an attempted pentagon with four right angles shown or draws a pentagon with exactly three right angles shown or draws a pentagon with five obtuse angles	A1	

$*$ $\mathbf{2 8}$ cont	Additional Guidance	If comparing 72° exterior angles 90°, they must state that they are referring to the
	If 'Yes' is ticked, M1 can still be scored	
	If neither box is ticked, 'No' must be implied by the explanation for M1A1	

AQA Thursday 2 November 2017 - Morning (Non-Calculator) Foundation Tier
23.

18	Alternative method 1		
	Angle $D A B=70$	B1	may be on diagram
	$\begin{aligned} & \text { Angle } A B C=360 \text { - their } 70-90- \\ & 120 \\ & \text { or Angle } A B C=80 \end{aligned}$	M1	may be on diagram
	Valid reason	A1	$\begin{aligned} & \text { eg } \\ & 180-80=100 \\ & 80+100=180 \end{aligned}$ angles on a straight line add to 180 $(360-80-80) / 2=100$
	Alternative method 2 working backwards from $x=100$		
	Angle $A B C=180-100$ or Angle $A B C=80$	M1	may be on diagram
	$\begin{aligned} & \text { Angle } D A B=360 \text { - their } 80-90 \text { - } \\ & 120 \\ & \text { or Angle } D A B=70 \end{aligned}$	M1dep	may be on diagram
	Valid reason	A1	eg opposite angles are equal vertically opposite angles (are equal) $180-70=110 \text { and } 180-110=70$
	Additional Guidance		
	Incorrect angles seen anywhere around A or B cannot score the A1		

AQA Wednesday 8 November 2017 - Morning (Calculator) Foundation Tier

24.

22	Alternative method 1 of 2		
	$\begin{aligned} & P A B=51 \\ & \text { or } P A D=51 \\ & \text { or } A P C=180-51 \\ & \text { or } A P C=129 \end{aligned}$	M1	
	$\begin{aligned} & A B P=180-51-\text { their } 51 \\ & \text { or } A B P=180-102 \\ & \text { or } A B P=78 \\ & \text { or } A D C=180-\text { their } 51-\text { their } 51 \\ & A D C=180-102 \\ & A D C=78 \end{aligned}$	M1dep	$\begin{aligned} & P A B=51 \text { and } P A D=51 \\ & \text { or } B A D=102 \end{aligned}$
	```\(B C D=180-\) their 78 or \(B C D=360\) - their 129 - their 51 - their 78 or \(B C D=360-258\) or \(B C D=102\) or \(4 x=180\) - their 78 or \(4 x=360\) - their 129 - their 51 - their 78 or \(4 x=360-258\) or \(4 x=102\) or \(102 \div 4\)```	M1dep	oe $\text { eg } B C D=(360-2 \times \text { their } 78) \div 2$   or $4 x=(360-2 \times$ their 78$) \div 2$
	25.5	A1	

Alternative method 2 continues on the next page


AQA Thursday 25 May 2017- Morning (Non-Calculator) Foundation Tier
25.

$\mathbf{2 3}$	$360 \div 20$   or   $20 \times 18=360$	M1	oe
	18	A1	
	Additional Guidance		
	If using interior angle method, must get as far as $360 \div 20$ for M1		

